Biopesticides based on Bacillus thuringiensis and genetically modified plants with genes from this bacterium have been used to control Plutella xylostella (L.) and Spodoptera frugiperda (J.E. Smith). However, the selection pressure imposed by these technologies may undermine the efficiency of this important alternative to synthetic insecticides. Toxins with different modes of action allow a satisfactory control of these insects. The purpose of this study was to characterize the protein and gene contents of 20 B. thuringiensis isolates from soil and insect samples collected in several areas of Northeast Brazil which are active against P. xylostella and S. frugiperda. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Polymerase chain reaction assays were used to determine toxin genes present within bacterial isolates. The protein profile of the majority of the isolates produced bands of approximately 130 kDa, suggesting the presence of Cry1, Cry8 and Cry9 proteins. The gene content of the isolates of B. thuringiensis investigated showed different gene profiles. Isolates LIIT-4306 and LIIT-4311 were the most actives against both species, with LC50 of 0.03 and 0.02 × 10(8) spores mL(-1), respectively, for P. xylostella, and LC50 of 0.001 × 10(8) spores mL(-1) for S. frugiperda. These isolates carried the cry1, cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry2, cry2A, cry8, and cry9C genes. The obtained gene profiles showed great potential for the control of P. xylostella and S. frugiperda, primarily because of the presence of several cry1A genes, which are found in isolates of B. thuringiensis active against these insects.