the challenge of balancing biodiversity protection with economic growth is epitomized by the development of renewable and unconventional energy, whose adoption is aimed at stemming the impacts of global climate change, yet has outpaced our understanding of biodiversity impacts. We evaluated the potential conflict between biodiversity protection and future electricity generation from renewable (wind farms, run-of-river hydro) and non-renewable (shale gas) sources in British Columbia (BC), Canada using three metrics: greenhouse gas (GHG) emissions, electricity cost, and overlap between future development and conservation priorities for several fish and wildlife groups-smallbodied vertebrates, large mammals, freshwater fish-and undisturbed landscapes. Sharp trade-offs in global versus regional biodiversity conservation exist for all energy technologies, and in BC they are currently smallest for wind energy: low GHG emissions, low-moderate overlap with top conservation priorities, and competitive energy cost. GHG emissions from shale gas are 1000 times higher than those from renewable sources, and run-of-river hydro has high overlap with conservation priorities for small-bodied vertebrates. When all species groups were considered simultaneously, run-of-river hydro had moderate overlap (0.56), while shale gas and onshore wind had low overlap with top conservation priorities (0.23 and 0.24, respectively). The unintended cost of distributed energy sources for regional biodiversity suggest that trade-offs based on more diverse metrics must be incorporated into energy planning. Biodiversity is declining at an alarming rate as a result of habitat loss, overexploitation, and climate change 1,2. To address this challenge, 196 countries have signed the Convention on Biological Diversity, which aims to halt biodiversity loss by 2020 by reducing direct harm, increasing protected areas, mitigating climate, and reducing global carbon emissions. With global energy demand projected to increase by 14-33% by the year 2035 3 , these commitments have contributed to an exponential increase in the development of renewable electricity sources (e.g., wind, solar, biomass, hydropower 4). Concomitantly, unconventional fossil fuels such as shale gas, are being developed worldwide (International Energy Agency; iea.org), and presented as less GHG intensive alternatives to coal-fired electricity generation 5. The development of new renewable electricity has been dominated by distributed energy resources (e.g. wind, solar, small hydropower) that are assumed to be more environmentally benign than traditional, large scale technologies, such as large dams or coal-fired plants 6. For example, the widespread adoption of renewable energy has resulted in spatially distributed interconnected networks of facilities that can