This paper introduces a new face recognition method-texture-based Principal Component Analysis (PCA), which employs PCA on texture features.Initially, the eigenspace of texture images is created by eigenvalues and eigenvectors.From this space,the eigentextures are constructed,and most of the eigentextures are selected by using PCA.With these eigentextures, we generalize Grassmannian distances into texture feature space to recognize.We address the problem of face recognition in terms of the subject-specific subspaces instead of image vectors.The proposed method is tested on Essex Face 94 database,and it has been demenstrated to have a promising performance.