A notable reliability model is the binary threshold system (also called the weighted-k-out-of-n system), which is a dichotomous system that is successful if and only if the weighted sum of its component successes exceeds or equals a particular threshold. The aim of this paper is to extend the utility of this model to the reliability analysis of a homogeneous binary-imaged multi-state coherent threshold system of (m+1) states, which is a non-repairable system with independent non-identical components. The paper characterizes such a system via switching-algebraic expressions of either system success or system failure at each non-zero level. These expressions are given either (a) as minimal sum-of-products formulas, or (b) as probability–ready expressions, which can be immediately converted, on a one-to-one basis, into probabilities or expected values. The various algebraic characterizations can be supplemented by a multitude of map representations, including a single multi-value Karnaugh map (MVKM) (giving a superfluous representation of the system structure function S), (m+1) maps of binary entries and multi-valued inputs representing the binary instances of S, or m maps, again of binary entries and multi-valued inputs, but now representing the success/failure at every non-zero level of the system. We demonstrate how to reduce these latter maps to conventional Karnaugh maps (CKMs) of much smaller sizes. Various characterizations are inter-related, and also related to pertinent concepts such as shellability of threshold systems, and also to characterizations via minimal upper vectors or via maximal lower vectors.