Automating the routing process is essential for the semiconductor industry to reduce time-to-market and increase productivity. This study sprang from the need to automate the following critical task in clock routing: given a set of nets, each net consisting of a driver and a receiver, connect each driver to its receiver, where the delay should be almost the same across the nets. We demonstrate that this problem can be reduced to bounded-path, that is, the NP-hard problem of finding a simple path, whose cost is bounded by a given range, connecting two given vertices in an undirected positively weighted graph. Furthermore, we show that bounded-path can be reduced to bit-vector reasoning and solved with a SAT-based bit-vector SMT solver. In order to render our solution scalable, we override the SAT solver's decision strategy with a novel graph-aware strategy and augment conflict analysis with a graphaware procedure. Our solution scales to graphs having millions of edges and vertices. It has been deployed at Intel for clock routing automation.