The relative merits of coherent-enabled optical access network architectures are explored, with a focus on achievable capacity, reach and split ratio. We review the progress in implementing the particular case of the ultra dense wavelength division multiplexed (UDWDM) passive optical network (PON), and discuss some challenges and solutions encountered. The applicability of digital signal processing (DSP) to coherent receivers in PONs is shown through the design and implementation of parallelized, low-complexity application-specific digital filters. In this work, we focus on mitigating the impact of local oscillator laser (LO) relative intensity noise (RIN) on receiver sensitivity, and propose an algorithm which compensates for this impairment. This phenomenon is investigated theoretically and then experimentally by evaluating the sensitivity of a coherent receiver incorporating different tunable light sources; a low-RIN external cavity laser (ECL) and a monolithically integrated digital supermode distributed Bragg reflector (DS-DBR) laser. It is shown that the RIN of the signal laser does not significantly contribute to the degradation of the receiver sensitivity. Finally, a 10 Gbit/s coherent PON is demonstrated using a DS-DBR laser as the LO laser. It is found that a receiver sensitivity of dBm is achievable assuming the use of hard-decision forward error correction.Index Terms-Optical access, ultra dense (UD), wavelength division multiplexing (WDM), passive optical network (PON), digital signal processing (DSP).