Abstract:In this paper, we introduce and study a strict generalization of symmetric rings. We call a ring $R$ \textit{`$P$-symmetric' } if for any $a,\, b,\, c\in R,\, abc=0$ implies $bac\in P(R)$, where $P(R)$ is the prime radical of $R$. It is shown that the class of $P$-symmetric rings lies between the class of central symmetric rings and generalized weakly symmetric rings. Relations are provided between $P$-symmetric rings and some other known classes of rings. From an arbitrary $P$-symmetric ring, we produce many … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.