We construct free Lie algebras which, together with the algebra of spatial rotations, form infinite-dimensional extensions of finite-dimensional Galilei Maxwell algebras appearing as global spacetime symmetries of extended non-relativistic objects and non-relativistic gravity theories. We show how various extensions of the ordinary Galilei algebra can be obtained by truncations and contractions, in some cases via an affine Kac-Moody algebra. The infinite-dimensional Lie algebras could be useful in the construction of generalized Newton-Cartan theories gravity theories and the objects that couple to them.