We classify Einstein metrics on $$\mathbb {R}^4$$
R
4
invariant under a four-dimensional group of isometries including a principal action of the Heisenberg group. We consider metrics which are either Ricci-flat or of negative Ricci curvature. We show that all of the Ricci-flat metrics, including the simplest ones which are hyper-Kähler, are incomplete. By contrast, those of negative Ricci curvature contain precisely two complete examples: the complex hyperbolic metric and a metric of cohomogeneity one known as the one-loop deformed universal hypermultiplet.