Abstract.Starting from the idea that neural group activity as such is unlikely to be immediately relevant for neural synchronization, we investigate mechanisms that act at the level of individual nerve impulses (spikes). Hence, we consider populations of formal spike-emitting 'leaky integrate and fire' neurons instead of networks built from non-spiking oscillators. After outlining the principle of synchronization for basic forms of recurrent impulse coupling by using a pair of simplified formal neurons, we show that local lateral inhibition results in robust impulse synchronization in networks with nonvanishing transmission delays.