In this paper we address the question of synchronizing random automata in the critical settings of almost-group automata. Group automata are automata where all letters act as permutations on the set of states, and they are not synchronizing (unless they have one state). In almost-group automata, one of the letters acts as a permutation on [Formula: see text] states, and the others as permutations. We prove that this small change is enough for automata to become synchronizing with high probability. More precisely, we establish that the probability that a strongly-connected almost-group automaton is not synchronizing is [Formula: see text], for a [Formula: see text]-letter alphabet. We also present an efficient algorithm that decides whether a strongly-connected almost-group automaton is synchronizing. For a natural model of computation, we establish a [Formula: see text] worst-case lower bound for this problem ([Formula: see text] for the average case), which is almost matched by our algorithm.