A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. This includes differences in the initial OM composition, as a result of variable upper water column conditions, or from those induced by selective aerobic degradation. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in oxygen content at the sediment-water interface. The export production indices, a cholesterol-based stanol/stenol and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change over the lateral oxygen gradients. Therefore, they do not exclusively reflect surface water productivity, but can be altered after deposition with varying oxygen content at the sediment-water interface. Two of the investigated proxies, the glycerol dibiphytanyl glycerol tetraethers (GDGT) based TEX<sub>86</sub> sea surface temperature indices and a productivity index based on phytol, phytane and pristane, did not show any trends related to oxygen concentration at the sediment-water interface. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX<sub>86</sub>, TEX<sub>86</sub><sup>L</sup>, and TEX<sub>86</sub><sup>H</sup> proxies. The phytol-based ratios were likely modified by the sedimentary production of pristane. Our results demonstrate the rapid and selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments on a small spatial scale and suggests useful tracers of changing redox conditions along the sediment-water interface