The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia.neural patterning | axial polarity | cilia basal body W ingless/Integrated (Wnt) signaling controls multiple events, including cell migration, planar cell polarity (PCP), and stem cell self-renewal (1, 2). It acts through two main pathways: the canonical or β-catenin-dependent pathway and the noncanonical or β-catenin-independent pathways, which include the PCP and Wnt/calcium pathways. Dishevelled (Dvl) is common to all three pathways (3). In the β-catenin-dependent pathway, Dvl is recruited by the receptor Frizzled (Fz), promoting disassembly of the β-catenin destruction complex through the subsequent recruitment of Axin. As a consequence, β-catenin translocates to the nucleus, where it acts as a master regulator. A common role of the β-catenin/Wnt pathway is in establishing the anteroposterior (AP) axis during development (4). PCP signals are transmitted from cell to cell and are responsible for the polarization of cell structures. During PCP signaling, Dvl is also recruited by a Fz receptor and promotes the asymmetrical localization of the PCP core proteins within the cell, such that the Fz-Dvl-Diversin (Div)/-Diego (Dgo) complex is oppositely localized to the Strabismus (Stbm)/Van-Gogh (Vang)-Prickle (Pk) complex. The asymmetrical subcellular localization of these elements in an epithelial sheet directs cytoskeletal reorganization that results, for instance, in a hair emerging solely from the distal edge of the cell (5-7). The same mechanism is used in mesenchymal cells to direct cell movement and migration during gastrulat...