The pathophysiology of structurally based corporeal veno-occlusive dysfunction is related to elevated corporeal connective tissue content. Based on our data and those in the literature corporeal fibrosis is hypothesized to develop secondary to abnormalities in the regulation of normal collagen synthesis and degradation, most likely associated with adverse influences of chronic ischemia.
Basic fibroblast growth factor (bFGF) binds to cell surface receptor (CSR) proteins and to heparan sulfate proteoglycans (HSPG). On the basis of equilibrium dissociation constants (Kd), the CSR has been considered a "high-affinity" binding site and HSPG a "low-affinity" site. We measured the apparent individual on and off rate constants (kon and koff) for bFGF binding to these two sites on intact cells and to each class of binding site in the absence of the other. While the kon's for CSR and HSPG on intact cells were not statistically different (konC = 2.27 x 10(8) M-1 min-1; konH = 0.90 x 10(8) M-1 min-1), the koff for the HSPG was 22.7-fold greater than that for the CSR (koffC = 0.003 min-1; koffH = 0.68 min-1). Thus, the difference in Kd's appears to result from the faster rate at which bFGF is released from the HSPG sites compared to the CSR. The kon's for isolated CSR and HSPG, and the koff for isolated HSPG, did not differ significantly from those for intact cells konC = 2.50 x 10(8) M-1 min-1; konH = 0.92 x 10(8) M-1 min-1; koffH = 0.095 min-1). However, the off rate for isolated CSR (koffC = 0.048 min-1) was statistically indistinguishable from the off rate for HSPG and 16-fold greater than the off rate for CSR on intact cells. The "high-affinity" binding of bFGF to intact cells probably refers only to a complex of bFGF with both CSR and HSPG, and not to the CSR alone.
The small leucine-rich proteoglycan decorin interacts with the epidermal growth factor receptor (EGFR) and triggers a signaling cascade that leads to elevation of endogenous p21 and growth suppression. We demonstrate that decorin causes a sustained down-regulation of the EGFR. Upon stable expression of decorin, the EGFR number is reduced by ϳ40%, without changes in EGFR expression. However, EGFR phosphorylation is nearly completely abolished. Concurrently, decorin attenuates the EGFR-mediated mobilization of intracellular calcium and blocks the growth of tumor xenografts by down-regulating the EGFR kinase in vivo. Thus, decorin acts as an autocrine and paracrine regulator of tumor growth and could be utilized as an effective anticancer agent.
Perlecan, a ubiquitous heparan sulfate proteoglycan, possesses angiogenic and growth-promoting attributes primarily by acting as a coreceptor for basic fibroblast growth factor (FGF-2). In this report we blocked perlecan expression by using either constitutive CMV-driven or doxycyclineinducible antisense constructs. Growth of colon carcinoma cells was markedly attenuated upon obliteration of perlecan gene expression and these effects correlated with reduced responsiveness to and affinity for mitogenic keratinocyte growth factor (FGF-7). Exogenous perlecan effectively reconstituted the activity of FGF-7 in the perlecan-deficient cells. Moreover, soluble FGF-7 specifically bound immobilized perlecan in a heparan sulfate-independent manner. In
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.