Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30-90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0-4.2 °C), respiration rate (+56-128%), activity (+15-76% daytime and +5-22% nighttime), heart rate (+67-190%), systolic (+44-67%) and diastolic blood pressure (+45-80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (12-24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ∼99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ∼106-140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.Author SummaryIn North America, EEEV causes the most severe mosquito-borne disease in humans highlighted by fatal encephalitis and permeant debilitating neurological sequelae in survivors. The first confirmed human cases were reported more than 80 years ago and since then multiple sporadic outbreaks have occurred including one of the largest in 2019. Unfortunately, most human infections are diagnosed at the on-set of severe neurological symptoms and consequently a detailed disease course in humans is lacking. This gap in knowledge is a significant obstacle in the development of appropriate animal models to evaluate countermeasures. Here, we performed a cutting-edge study by utilizing a new telemetry technology to understand the course of EEEV infection in a susceptible macaque model by measuring multiple physiological parameters relevant to human disease. Our study demonstrates that the infection rapidly produces considerable alterations in many critical parameters including the electrical activity of the heart and the brain leading to severe disease. The study also highlights the extraordinary potential of new telemetry technology to develop the next generation of animal models in order to comprehensively investigate pathogenesis as well as evaluate countermeasures to treat and/or prevent EEEV disease.