Chromosomal rearrangements involving erythroblast transformation specific (ETS) family transcription factors were recently defined as the most common genetic alterations in human prostate cancer. Despite their prevalence, it is unclear what quantitative role they play in either initiation or progression of the disease. Using a lentiviral transduction and dissociated cell prostate regeneration approach, we find that acutely increased expression of ETS proteins in adult murine prostate epithelial cells is sufficient to induce the formation of epithelial hyperplasia and focal prostatic intraepithelial neoplasia (PIN) lesions, but not progression to carcinoma. However, combined expression of ERG with additional genetic alternations associated with human prostate cancer can lead to aggressive disease. Although ERG overexpression does not cooperate with loss of the tumor suppressor p53, it does collaborate with alterations in PI3K signaling, such as Pten knockdown or AKT up-regulation, to produce a well-differentiated adenocarcinoma. Most striking is our finding that overexpression of androgen receptor (AR) does not give rise to any hyperplastic lesions, but when combined with high levels of ERG, it promotes the development of a more poorly differentiated, invasive adenocarcinoma. These findings suggest that in human prostate cancer, the most potent function of ETS gene fusions may be to synergize with alternative genetic events and provide different pathways for carcinoma production and invasive behavior. Our results provide direct evidence for selective cooperating events in ERG-induced prostate tumorigenesis and offer a rational basis for combined therapeutic interventions against multiple oncogenic pathways in prostate cancer.AKT ͉ androgen receptor ͉ ERG ͉ prostate cancer ͉ PTEN H uman cancer is a multigene disorder in which several somatic mutations in cancer predisposition genes are required in a stepwise manner (1). The first genetic alteration usually confers a selective growth advantage and subsequently results in clonal expansion to initiate the neoplastic process. But the cells must accumulate several other rate-limiting mutations over a long period to become malignant (2). For prostate cancer (PCa), various oncogenes and tumor suppressor genes, including NKX3.1, PTEN, p27, and p53, and androgen receptor (AR) signaling have been implicated in the disease progression (3). However, the key initiating steps in prostate carcinogenesis remain uncertain, and most genetic alterations that can collaborate to drive tumor progression have yet to be elucidated.Chromosomal translocations play critical roles in hematological malignancies (4). Several lines of evidence in epithelial cancers of distinct tissue origins suggest that acquired chromosomal rearrangements could also be the common genetic events in many, if not all, epithelial cancers (5). Recent studies showed that 50-80% of patients with PCa were found to harbor fusion transcripts between an androgen-regulated gene, TMPRSS2, and members of the erythroblast tr...