MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that negatively regulate gene expression. Recent evidence indicates that miRNAs may play an important role in cancer. However, the mechanism of their deregulation in neoplastic transformation has only begun to be understood. To elucidate the role of tumor suppressor p53 in regulation of miRNAs, we have analyzed changes in miRNA microarray expression profile immediately after conditional inactivation of p53 in primary mouse ovarian surface epithelium cells. Among the most significantly affected miRNAs were miR-34b and miR-34c, which were down-regulated 12-fold according to quantitative reverse transcription-PCR analysis. Computational promoter analysis of the mir-34b/mir-34c locus identified the presence of evolutionarily conserved p53 binding sites f3 kb upstream of the miRNA coding sequence. Consistent with evolutionary conservation, mir-34b/mir-34c were also down-regulated in p53 -null human ovarian carcinoma cells. Furthermore, as expected from p53 binding to the mir34b/c promoter, doxorubicin treatment of wild-type, but not p53-deficient, cells resulted in an increase of mir-34b/ mir-34c expression. Importantly, miR-34b and miR-34c cooperate in suppressing proliferation and soft-agar colony formation of neoplastic epithelial ovarian cells, in agreement with the partially overlapping spectrum of their predicted targets. Taken together, these results show the existence of a novel mechanism by which p53 suppresses such critical components of neoplastic growth as cell proliferation and adhesion-independent colony formation. [Cancer Res 2007; 67(18):8433-8]
SUMMARY Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprise a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.
Pathways mediated by p53 and Rb are frequently altered in aggressive human cancers, including prostate carcinoma. To test directly the roles of p53 and Rb in prostate carcinogenesis, we have conditionally inactivated these genes in the prostate epithelium of the mouse. Inactivation of either p53 or Rb leads to prostatic intraepithelial neoplasia developing from the luminal epithelium by 600 days of age. In contrast, inactivation of both genes results in rapidly developing (median survival, 226 days) carcinomas showing both luminal epithelial and neuroendocrine differentiation. The resulting neoplasms are highly metastatic, resistant to androgen depletion from the early stage of development, and marked with multiple gene expression signatures commonly found in human prostate carcinomas. Interestingly, gains at 4qC3 and 4qD2.2 and loss at 14qA2-qD2 have been consistently found by comparative genomic hybridization. These loci contain such human cancer-related genes as Nfib, L-myc, and Nkx3.1, respectively. Our studies show a critical role for p53 and Rb deficiency in prostate carcinogenesis and identify likely secondary genetic alterations. The new genetically defined model should be particularly valuable for providing new molecular insights into the pathogenesis of human prostate cancer. (Cancer Res 2006; 66(16): 7889-98)
Purpose: The miR-34 family is directly transactivated by tumor suppressor p53, which is frequently mutated in human epithelial ovarian cancer (EOC). We hypothesized that miR-34 expression would be decreased in EOC and that reconstituted miR-34 expression might reduce cell proliferation and invasion of EOC cells.Experimental Designs: miR-34 expression was determined by quantitative reverse transcription-PCR and in situ hybridization in a panel of 83 human EOC samples. Functional characterization of miR-34 was accomplished by reconstitution of miR-34 expression in EOC cells with synthetic pre-miR molecules followed by determining changes in proliferation, apoptosis, and invasion.Results: miR-34a expression is decreased in 100%, and miR-34b*/c in 72%, of EOC with p53 mutation, whereas miR-34a is also downregulated in 93% of tumors with wild-type p53. Furthermore, expression of miR-34b*/c is significantly reduced in stage IV tumors compared with stage III (P = 0.0171 and P = 0.0029, respectively). Additionally, we observed promoter methylation and copy number variations at mir-34. In situ hybridization showed that miR-34a expression is inversely correlated with MET immunohistochemical staining, consistent with translational inhibition by miR-34a. Finally, miR-34 reconstitution experiments in p53 mutant EOC cells resulted in reduced proliferation, motility, and invasion, the latter of which was dependent on MET expression.Conclusions: Our work suggests that miR-34 family plays an important role in EOC pathogenesis and reduced expression of miR-34b*/c may be particularly important for progression to the most advanced stages. Part of miR-34 effects on motility and invasion may be explained by regulation of MET, which is frequently overexpressed in EOC. Clin Cancer Res; 16(4); 1119-28. ©2010 AACR.Ovarian cancer is the most deadly malignancy and will lead to ∼15,000 deaths in the United States in 2009 (1). Although survival has increased slightly over the past 25 years, 5-year survival remains below 50%. A major factor for low survival is our poor understanding of the initiating events that lead to ovarian cancer and how the disease progresses. Due to asymptomatic development and few screening options, ∼70% of women present at late stages of carcinogenesis. At an advanced stage, treatment options are severely limited, with palliative treatment most often administered in the form of debulking surgery and paclitaxel-and platinum-based therapeutics. However, work over the past decade using human cancer samples and mouse models have revealed new insights into the molecular basis of ovarian cancer, particularly its most common form epithelial ovarian cancer (EOC). For example, it is well established that >50% of highgrade serous-type EOCs contain p53 mutations and alterations in the RB pathway (reviewed in refs. 2, 3). Consistently, conditional inactivation of p53 and Rb in the mouse ovarian surface epithelium (OSE) leads to development of poorly differentiated serous ovarian adenocarcinomas (4), whereas K-Ras, Pten, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.