This study investigates the impact of the Flux-Adjusting Surface Data Assimilation System (FASDAS) and the four-dimensional data assimilation (FDDA) using analysis nudging on the simulation of a monsoon depression that formed over India during the 1999 Bay of Bengal Monsoon Experiment (BOBMEX) field campaign. FASDAS allows for the indirect assimilation/adjustment of soil moisture and soil temperature together with continuous direct surface data assimilation of surface temperature and surface humidity. Two additional numerical experiments [control (CTRL) and FDDA] were conducted to assess the relative improvements to the simulation by FASDAS. To improve the initial analysis for the FDDA and the surface data assimilation (SDA) runs, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature profiles from the NOAA Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS), surface winds from the Quick Scatterometer (QuikSCAT), and the conventional meteorological upper-air (radiosonde/rawinsonde, pilot balloon) and surface data. The results from the three simulations are compared with each other as well as with NCEP–NCAR reanalysis, the Tropical Rainfall Measuring Mission (TRMM), and the special buoy, ship, and radiosonde observations available during BOBMEX. As compared with the CTRL, the FASDAS and the FDDA runs resulted in (i) a relatively better-developed cyclonic circulation and (ii) a larger spatial area as well as increased rainfall amounts over the coastal regions after landfall. The FASDAS run showed a consistently improved model simulation performance in terms of reduced rms errors of surface humidity and surface temperature as compared with the CTRL and the FDDA runs.