A new, DMF-coordinated, pre-organized diiron compound [Fe2(N-Et-HPTB)(DMF)4](BF4)3 (1) was synthesized, avoiding the formation of [Fe(N-Et-HPTB)](BF4)2 (10) and [Fe2(N-Et-HPTB)(μ-MeCONH)](BF4)2 (11), where N-Et-HPTB is the anion of N,N,N’,N’-tetrakis(2-(1-ethylbenzimidazolyl))-2-hydroxy-1,3-diaminopropane. Compound 1 is a versatile reactant from which nine new compounds have been generated. Transformations include solvent exchange to yield [Fe2(N-Et-HPTB)(MeCN)4](BF4)3 (2), substitution to afford [Fe2(N-Et-HPTB)(μ-RCOO)](BF4)2 (3, R = Ph; 4, RCOO = 4-methyl-2,6-diphenyl benzoate]), one-electron oxidation by (Cp2Fe)(BF4) to yield a Robin-Day class II mixed valent diiron(II,III) compound, [Fe2(N-Et-HPTB)(μ-PhCOO)(DMF)2](BF4)3 (5), two-electron oxidation with tris(4-bromophenyl)aminium hexachloroantimonate to generate [Fe2(N-Et-HPTB)Cl3(DMF)](BF4)2 (6), reaction with TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) to form [Fe5(N-Et-HPTB)2(μ-OH)4(μ-O)(DMF)2](BF4)4 (7), and reaction with dioxygen to yield an unstable peroxo compound that decomposes at room temperature to generate [Fe4(N-Et-HPTB)2(μ-O)3(H2O)2](BF4)·8DMF (8) and [Fe4(N-Et-HPTB)2(μ-O)4](BF4)2 (9). Compound 5 loses its bridging benzoate ligand upon further oxidation to form [Fe2(N-Et-HPTB)(OH)2(DMF)2](BF4)3 (12). Reaction of the diiron(II,III) compound (5) with dioxygen was studied in detail by spectroscopic methods. All compounds (1-12) were characterized by single crystal X-ray structure determinations. Selected compounds and reaction intermediates were further examined by a combination of elemental analysis, electronic absorption spectroscopy, Mössbauer spectroscopy, EPR spectroscopy, resonance Raman spectroscopy, and cyclic voltammetry.