The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ-butyl 2,6-di-tert-butyl-4-methylphenyl hydrogen phosphato-κO:κO′)di-μ-hydroxido-bis[(butyl 2,6-di-tert-butyl-4-methylphenyl hydrogen phosphato-κO)(butyl 2,6-di-tert-butyl-4-methylphenyl phosphato-κO)chromium](Cr—Cr) heptane disolvate or {Cr2(μ2-OH)2[μ2-PO2(OBu)(O-2,6-
t
Bu2-4-MeC6H2)-κO:κO′]2[PO2(OBu)(O-2,6-
t
Bu2-4-MeC6H2)-κO]2[HOPO(OBu)(O-2,6-
t
Bu2-4-MeC6H2)-κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted (1)·2(heptane), [μ-bis(2,6-diisopropylphenyl) phosphato-1κO:2κO′]bis[bis(2,6-diisopropylphenyl) phosphato]-1κO,2κO-chlorido-2κCl-triethanol-1κ2
O,2κO-di-μ-ethanolato-1κ2
O:2κ2
O-dichromium(Cr—Cr) ethanol monosolvate or {Cr2(μ2-OEt)2[μ2-PO2(O-2,6-iPr2-C6H3)2-κO:κO′][PO2(O-2,6-iPr2-C6H3)2-κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted (2)·EtOH, and di-μ-ethanolato-1κ2
O:2κ2
O-bis{[bis(2,6-diisopropylphenyl) hydrogen phosphato-κO][bis(2,6-diisopropylphenyl) phosphato-κO]chlorido(ethanol-κO)chromium}(Cr—Cr) benzene disolvate or {Cr2(μ2-OEt)2[PO2(O-2,6-iPr2-C6H3)2-κO]2[HOPO(O-2,6-iPr2-C6H3)2-κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted (3)·2C6H6. Complexes (1)–(3) have been synthesized by an exchange reaction between the in-situ-generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of (1) from heptane, (2) from ethanol and (3) from an ethanol/benzene mixture allowed us to obtain crystals of (1)·2(heptane), (2)·EtOH and (3)·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P\overline 1 space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in (1), Cr2PO4 in (2) and Cr2O2 in (3), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2-OH in (1) or μ2-OEt in (2) and (3). The organophosphate ligands demonstrate terminal κO coordination modes in (1)–(3) and bridging μ2-κO:κO′ coordination modes in (1) and (2). All the complexes exhibit hydrogen bonding: two intramolecular Ophos...H—Ophos interactions in (1) and (3) form two {H[PO2(OR)2]2} associates; two intramolecular Cl...H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in (3); two intramolecular Ophos...H—OEt interactions and two O...H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in (2)·EtOH. The presence of both basic ligands (OH− or OEt−) and acidic [H(phosphate)2]− associates at the same metal centres in (1) and (3) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short-chain branching. The formation of a small amount of α-olefins has been detected in this reaction.