The excessive use of chemical pesticides in agricultural fields for controlling plant pathogenic microorganisms harms human health, the environment, and other beneficial microorganisms in the soil and plants. To address this challenge, it is essential to isolate and discover bioactive compounds from biological resources that could inhibit plant pathogenic microorganisms. In this study, the culture filtrate of the edible mushroom Pleurotus ostreatus was subjected to bioassay-guided isolation, and two phthalide derivatives-4,6-dimethoxyphthalide (1) and 5,7-dimethoxyphthalide (2)-were identified, along with an oxindole compound-3-hydroxy-3-methyloxindole (3). The inhibitory activities of the three compounds were evaluated against four fungal and five bacterial pathogens. Remarkably, 1 and 2 exhibited the lowest IC 50 values against the conidial germination and germ tube elongation of the rice blast fungus Pyricularia oryzae. However, their effectiveness against bacterial pathogens was relatively low. The (S) and (R)-enantiomers of 3-hydroxy-3-methyloxindole showed different activities against plant fungal pathogens and bacterial plant pathogens.