Sphingosine kinases (SphKs) are a class of lipid kinases, that have received extensive attention as important rate-limiting enzyme in tumor. Inhibition of the activity of SphK1 can lead to an anticancer effect. Herein, we describe the discovery process and biological characteristics of a new SphK1 inhibitor, ascorbyl palmitate, discovered through computer-aided drug design. Biochemical experiments show that ascorbyl palmitate has a strong inhibitory effect on SphK1, with an IC50 value of 6.4 μM. The MTT experiment showed that ascorbyl palmitate had anti-cancer effects toward the U87, A549, 22RV1, and A375 cell lines. Among them, ascorbyl palmitate has prominent inhibitory activity against the 22RV1 cell line, with an IC50 value of 41.57 μM. To explore the structure–activity relationship, four ascorbyl palmitate derivatives were synthesized and tested for kinase activity. The outstanding effect of ascorbyl palmitate toward SphK1 and its known non-toxicity suggest that ascorbyl palmitate may be a lead compound for the development of effective SphK1 anti-cancer inhibitors.