This study prepared TPDA, a high‐intrinsic‐viscosity cationic polyacrylamide, through ultraviolet (UV)‐initiated template polymerization. Acrylamide (AM) and diallyldimethylammonium chloride (DMD) served as monomers, and poly sodium polyacrylate (PAAS) served as the template. The structure of TPDA was characterized by Fourier‐transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The synthetic conditions of TPDA were studied and optimized by single‐factor experiments. An optimized product was obtained at an intrinsic viscosity of 11.3 dL g−1 and a conversion rate of 97.2% with a total monomer concentration of 20%, DMD concentration of 30%, initiator concentration of 0.045%, pH of 8, EDTA concentration of 0.3%, and UV irradiation of 90 min. Results showed that TPDA was the copolymer of AM and DMD with a micro‐block structure at the molecular chain. Given its high intrinsic viscosity and cationic block structure, TPDA performed better in kaolin flocculation than that prepared without template addition. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41747.