This paper presents studies on the influence of the chemical structure of (meth)acrylic monomers on the properties of powder coatings based on polyacrylate resins. For this purpose, a wide range of monomers were selected—2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), n-butyl acrylate (nBA), tert-butyl acrylate (tBA), dodecyl acrylate (DA), ethyl acrylate (EA) and benzyl acrylate (BAZ)—for the synthesis of the polyacrylate resin. The average molecular mass and molecular mass distribution of the synthesized resins were measured by gel permeation chromatography (GPC). The glass transition temperature (Tg) and viscosity of polyacrylate resins were determined by using differential scanning calorimetry (DSC) and a Brookfield viscometer. These parameters were necessary to obtain information about storage stability and behavior during the application of powder clear coatings. Additionally, DSC was also used to checked the course of the low-temperature curing reaction between the hydroxyl group contained in the polyacrylate resin and the blocked polyisocyanate group derived from a commercial agent such as Vestanat B 1358/100. The properties of the cured powder clear coatings were tested, such as: roughness, gloss, adhesion to the steel surface, hardness, cupping, scratch resistance, impact resistance and water contact angle. The best powder clear coating based on the polyacrylate resin L_HEMA/6MMA/0.5nBA/0.5DA was characterized as having good scratch resistance (550 g) and adhesion to the steel surface, a high water contact angle (93.53 deg.) and excellent cupping (13.38 mm). Moreover, its crosslinking density (CD) and its thermal stability was checked by using dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA).