Herein, the microwave-assisted grafting method was employed for the development of a novel pH-responsive graft copolymer derived from polyacrylamide-modified hydroxypropyl methyl cellulose [g-HPMC (M)]. The synthesised copolymer has been used for in vitro sustained release of ornidazole. Various characterizations confirm the formation of graft copolymer. Swelling studies indicate the pHdependent swelling behaviour, while deswelling studies suggest that g-HPMC (M) shows faster deswelling in response to change in pH and/temperature. The cell viability study signifies that g-HPMC (M) is cytocompatible. The in-vitro release study demonstrates that g-HPMC (M) delivers ornidazole specifically in the colon pH, without release of the drug in the acidic environment, ensuring g-HPMC (M) as an ideal candidate for orally administered colonic drug carriers. The kinetics and mechanism of drug release suggest that it follows a non-Fickian release mechanism.