We spectroscopically analyze the effect of e-beam deposition of lanthanide metals on the electronic structure and conductivities of films of semiconducting (SC) single-walled carbon nanotubes (SWNTs) in high vacuum. We employ near-infrared and Raman spectroscopy to interpret the changes in the electronic structure of SWNTs on exposure to small amounts of the lanthanides (Ln = Sm, Eu, Gd, Dy, Ho, Yb), based on the behavior of the reference metals (M = Li, Cr) which are taken to exemplify ionic and covalent bonding, respectively. The analysis shows that while the lanthanides are more electropositive than the transition metals, in most cases they exhibit similar conductivity behavior which we interpret in terms of the formation of covalent bis-hexahapto bonds [(η(6)-SWNT)M(η(6)-SWNT), where M = La, Nd, Gd, Dy, Ho]. However, only M = Eu, Sm, Yb show the continually increasing conductivity characteristic of Li, and this supports our contention that these metals provide the first examples of mixed covalent-ionic bis-hexahapto bonds [(η(6)-SWNT)M(η(6)-SWNT), where M = Sm, Eu, Yb].