The synthesis and characterization of novel poly(CTFE‐g‐oligoEO) graft copolymers [chlorotrifluoroethylene (CTFE) and ethylene oxide (EO)] are presented. First, vinyl ether monomers bearing oligo(EO) were prepared by transetherification of ω‐hydroxyoligo(EO) with ethyl vinyl ether catalyzed by a palladium complex in 70–84% yields. Two vinyl ethers of different molecular weights (three and 10 EO units) were thus obtained. Then, radical copolymerization of the above vinyl ethers with CTFE led to alternating poly(CTFE‐alt‐VE) copolymers that bore oligo(OE) side chains in satisfactory yields (65%). These original poly(CTFE‐g‐oligoEO) graft copolymers were characterized by 1H, 19F, and 13C NMR spectroscopy. Their molecular weights reached 19,000 g mol−1, and their thermal properties were investigated while their glass transition temperatures ranged between −42 and −36 °C. Their thermogravimetric analyses under air showed decomposition temperatures of 270 °C with 10% weight loss (Td,10%). These novel copolymers are of potential interest as polymer electrolytes in lithium ion batteries, showing room temperature conductivities ranging from 4.49 × 10−7 to 1.45 × 10−6 S cm−1 for unplasticized material. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013