Antibiotic water contamination is a growing environmental problem in the present day. As a result, water treatment is required for its reduction and elimination. Due to their important role in resolving this issue, photocatalysts have drawn a great deal of interest over the past few decades. When non-biodegradable organic matter is present in polluted water, the photo catalytic process, which is both environmentally friendly and an improved oxidation method, can be an effective means of remediation. In this regard, we report the successful synthesis of pure phased rare earth doped ZnO nanoparticles for tetracycline degradation. The prepared catalysts were systematically characterized for structural, optical, and magnetic properties. The optical band gap was tailored by rare earth doping, with redshift for Sm and Dy doped nanoparticles and blueshift for Nd doped ZnO nanoparticles. The analysis of photoluminescence spectra revealed information about the defect chemistry of all synthesised nanoparticles. Magnetic studies revealed that all synthesized diluted magnetic semiconductors exhibit room temperature ferromagnetism and can be employed for spintronic applications. Moreover, Dy doped ZnO nanoparticles were found to exhibit a maximum degradation efficiency of 74.19% for tetracycline (TCN) removal. The synthesized catalysts were also employed for the degradation of Malachite green (MG), and Crystal violet (CV) dyes. The maximum degradation efficiency achieved was 97.18% for MG and 98% for CV for Dy doped ZnO nanoparticles. The degradation mechanism involved has been discussed in view of the reactive species determined from scavenging experiments.