The focus of the review is on the specific aspects of nickel's effects on growth, morphology, photosynthesis, mineral nutrition and enzyme activity of plants. The mobility of nickel in the environment and the consequent contamination in soil and water is of great concern. Also, the detrimental effects of excessive nickel on plant growth have been well known for many years. Toxic effects of nickel on plants include alterations in the germination process as well as in the growth of roots, stems and leaves. Total dry matter production and yield was significantly affected by nickel and also causes deleterious effects on plant physiological processes, such as photosynthesis, water relations and mineral nutrition. Nickel strongly influences metabolic reactions in plants and has the ability to generate reactive oxygen species which may cause oxidative stress. More recent evidence indicates that nickel is required in small amounts for normal plant growth and development. Hence, with the increasing level of nickel pollution in the environment, it is essential to understand the functional roles and toxic effects of nickel in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.