The synthesis, evaluation, and molecular modeling of a series of 18F-labeled 4-anilidopiperidines with high affinities for the mu-opioid receptor (mu-OR) are reported. On the basis of the high brain uptake and selective retention in brain regions that contain a high concentration of the mu-OR, combined with a good metabolic stability, [18F]fluoro-pentyl carfentanil ([18F]4) and 2-(+/-)[18F]fluoropropyl-sufentanil ([18F]6) were selected as the lead compounds for further evaluation. The binding affinity to the human mu-OR was 0.74 and 0.13 nM for [18F]4 and [18F]6, respectively. In vitro autoradiography of [18F]4 and [18F]6 on rat brain sections produced patterns in accordance with the known distribution of mu-OR expression. Structure-activity relationships of the fluorinated compounds are discussed with respect to the interaction with an activated-state model of the mu-OR. Taken together, the in vivo and in vitro data indicate that [18F]4 and [18F]6 hold promise for studying the mu-opioid receptor in humans by means of positron emission tomography.