If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
AbstractPurpose -This paper aims to a newly designed photoresponsive four-armed graft copolymer was synthesised and characterised. The synthesised polymer contains photochemical group and a greater part of the cross-linkable functional group which is not affected by short wavelength when subject to under ultraviolet (UV) irradiation in film status. Design/methodology/approach -The four-armed macroinitiator was prepared by reacting diethanol amine with poly [methyl-2-chloro-4-{7-(chloroacetyl) oxy]-2-oxo-2H-chromen-4-yl}-2-methylbutanoate] and acylating the product with chloroacetyl chloride. A grafting reaction with n-butyl methacrylate was carried out in the presence of the four-armed macroinitiator and the catalyst CuBr/2, 2=-bipyridyne at 90°C. All of the synthesised polymers were structurally characterised by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen-1 Nuclear Magnetic Resonance (1H-NMR) spectra. Gel permeation chromatography was used to obtain the molecular weights of polymer. Findings -1H-NMR, FT-IR and ultraviolet-visible (UV-Vis) spectroscopy demonstrated that the four-armed macroinitiator and the graft copolymer was successfully synthesised. The end-functionalised poly(methyl methacrylate) with 7-hydroxyl-4-chloromethyl coumarone was irradiated at the wavelength larger than 300 nm to create the cyclobutane ring in between the 7-hydroxyl-4-chloro methyl coumarone unities. To characterise the polymer and show the transformation of coumarone unities into photodimers, 1H-NMR, FT-IR and UV-Vis spectroscopy were used. Research limitations/implications -Graft copolymer containing coumarone has involves photocrosslinkable functional group, in which reactive functional group has attracted great interest from both industrial and academic fields. Their synthesis provides the opportunity for a compatible modification of the graft copolymer structure to develop adapted macromolecules for a range of end practices. Practical implications -A photoresponsive graft copolymer can have a role in an active area of polymer chemistry research due to its uses in the areas of photolithography, liquid crystal, non-linear optical materials, laser dyes, fluorescence materials and futur...