Mechanisms of the phase separation
and remixing of cationic PEG-containing
block copolymers have been investigated in aqueous lithium triflate
solutions. The polycation was poly(vinylbenzyl trimethylammonium triflate).
We have previously reported on one such block copolymer, which upon
cooling of a hot clear solution first underwent phase separation into
a turbid colloid and, later, partially cleared again with further
cooling. To better understand the balance of various interactions
in the solutions/dispersions, a series of polymers with varying DP
of the cationic block was synthesized. From one of the polymers, the
alkyl end group (a fragment of the chain transfer agent) was removed.
The length of the cationic block affected critically the behavior,
but the hydrophobic end group had a minimal effect. Polymers with
a short cationic block turn cloudy and partially clear again during
a temperature decrease, whereas those with a long cationic block phase
separate and slowly precipitate and remix only when heated. Phase
separation takes place via particle formation, and we suggest different
mechanisms for colloidal stabilization of particles composed of short
or long chains.