Broader contextUltra-flexible and lightweight solar cells with high power output per weight have attracted much attention due to their high potential for utilization in applications such as spacecraft, aircraft, personal pack load and wearable electronic devices. PbS colloidal quantum dots (CQD) are promising candidates for the fabrication of flexible and lightweight solar cells due to their nanocrystal character, which enables functioning energy conversion even in the case when the solar cell is under extreme deformation. Moreover, the PbS CQD possesses the advantages of solution-processability, size-dependent optoelectronic properties and a broad light absorption spectrum covering the ultraviolet-visible-near infrared wavelength region. In this study, we report an ultra-flexible and extremely lightweight PbS CQD solar cell. The solar cell is fabricated on a 1.3 mm-thick flexible polyethylene naphthalate foil substrate and an Ag nanowire network with strong mechanical properties and a large aspect ratio and is used as a transparent and conductive front-electrode. The thickness of the full solar cell is less than 2 mm and the device gives B10% power conversion efficiency with an extremely low weight of 6.5 g m À2 , resulting in a high power-per-weight output ofThe demonstrated CQD solar cell shows good mechanical properties and works during large compression-stretching deformation. In particular, the solar cell also exhibits promising stability both under continuous illumination and after storage under ambient conditions. These results reveal that the CQDs are very promising materials for realizing flexible, efficient and extremely lightweight solar cells that makes it possible for utilization of solar energy in many new applications.