Reaction of a non‐innocent o‐aminophenol benzoxazole based ligand HLBAP with VOCl3 afforded a vanadyl complex, VOLBIS (SQ), in which SQ is a 2,4‐di‐tert‐butylsemiquinone produced from hydrolysis of HLBAP. The crystal structure of VOLBIS (SQ) exhibits an octahedral geometry with the VO2+ center coordinated by two nitrogen and one oxygen atoms of LBAP and two oxygen atoms of SQ. Electrochemical studies showed quasi‐reversible metal‐centered reduction and ligand‐centered oxidation of complex. The magnetic moment of VOLBIS (SQ) is consistent with the spin‐only value expected for S = 1/2 system. The neutral species of VOLBIS (SQ) is EPR active, which is consistent with a paramagnetic electronic ground state (S = 1/2). This result is in accordance with the vanadyl (IV) moiety surrounded by tridentate iminobenzosemiquinonate anion radical (HLBIS)•‐ and benzosemiquinone ligand (SQ)•. The theoretical calculations confirm the experimental results. Furthermore, we present the optimal conditions for maximum efficiency of sulfide oxidation for oxidative desulfurization with hydrogen peroxide and 6 times reusability of catalyst for sulfoxidation of dibenzothiophene.