Three different TiO 2 catalysts are prepared using different methods. MgAl-CO 3 2− layered double hydroxides (LDH) were obtained by the sol-gel method. In the preparation of the composites, the three photocatalysts were combined with LDH following different methodologies. The composites were characterized using X-ray diffraction (XRD), specific surface area (SA), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The influence of the synthesis method on the preparation of the composites was evaluated by analyzing their photocatalytic activity against phenol as a model organic pollutant under UV irradiation. The photocatalytic activity of the composites improves when the chemical interaction, determined by XPS, between the TiO 2 and the LDH decreases. The same happens when the ratio of the anatase-rutile phases, determined by XRD, approaches optimum (80:20%). The effect of the composite concentration in the solution (0.5-2.0 g/L) was investigated, and the light-shielding phenomenon due to high composite concentration decreases the phenol photodegradation. The reduction of photocatalytic activity in reuse cycles is due to loss and partial deactivation of the material. The elimination of phenol is attributed primarily to the photocatalytic process due to the generation of • OH radicals and to a lesser extent the adsorption process also present in the samples.