A composite flocculant P(AM–DMDAAC) was synthesized by the copolymerization of acrylamide (AM) and dimethyl diallyl ammonium chloride (DMDAAC). By using microwave (MV) assistance with ammonium persulfate as initiator, the synthesis had a short reaction time and yielded a product with good solubility. Fourier-transform infrared spectroscopy, scanning electron microscopy, and differential thermal analysis–thermogravimetric analysis were employed to determine the structure and morphology of P(AM–DMDAAC). The parameters affecting the intrinsic viscosity of P(AM–DMDAAC), such as MV time, mass ratio of DMDAAC to AM, bath time, reaction temperature, pH value, and the dosages of ammonium persulfate initiator, EDTA, sodium benzoate, and urea were examined. Results showed that the optimum synthesis conditions were MV time of 1.5 min, m(DMDAAC):m(AM) of 4:16, 0.5 wt‰ initiator, 0.4 wt‰ EDTA, 0.3 wt‰ sodium benzoate, 2 wt‰ urea, 4 h bath time, reaction temperature of 40 °C, and pH of 2. The optimal dimethyl phthalate (DMP) removal rate can reach 96.9% by using P(AM–DMDAAC), and the P(AM–DMDAAC) had better flocculation than PAM, PAC, and PFS.