Since December 2019, the humanity is in trouble due to the huge infection of SARS‐CoV‐2 and caused COVID‐19, named by WHO. Therefore, researchers and health care organizations are using the repurposing drugs against the infection by this new coronavirus. Acyclovir and ganciclovir are the drugs used in the cure of infection due to herpes virus so the impact of these drugs along with the designed ionic liquids individually as well as in combination against the Mpro of nCoV was investigated using molecular docking. The drugs {acyclovir (1) and ganciclovir (2)}, ionic liquids (A, B, and C), and their combinations (1‐A, 1‐B, 1‐C, 2‐A, 2‐B, and 2‐C) were studied using density functional theory (DFT) calculations via determining the different energies. These values are important to understand the formation of 1‐A, 1‐B, 1‐C, 2‐A, 2‐B, and 2‐C and are found to negative. Complexes formed by acyclovir with ILs (B and C) are more favorable due to less value of change in free energy. Further, 1 interacts with IL(C) and 2 interacts well with IL(A), and it is based on the calculated dipole moment of 1‐C and 2‐A, as 17.4 and 27.6, respectively. Therefore, it can be considered as more polar and more water soluble. Results revealed that complex 2‐A found to more stable than 1‐A and showed the best binding energy of −149 kcal/mol against the Mpro of nCoV. It indicates that the drug, ganciclovir (2) in presence of the IL(A) binds effectively with the Mpro of nCoV instead independently.