Two 3,6-disubstituted-[1,2,4]triazolo[3,4-
b
][1,3,4]thiadiazole
derivatives, namely, 3-(adamantan-1-yl)-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[3,4-
b
][1,3,4]thiadiazole
1
and 6-(2-chloro-6-fluorophenyl)-3-phenyl-[1,2,4]triazolo[3,4-
b
][1,3,4]thiadiazole
2
, were prepared, and
the detailed analysis of the weak intermolecular interactions responsible
for the supramolecular self-assembly was performed using X-ray diffraction
and theoretical tools. Analyses of Hirshfeld surface and 2D fingerprint
plot demonstrated the effect of adamant-1-yl/phenyl moieties on intermolecular
interactions in solid-state structures. The effect of these substituents
on H···H/Cl/N contacts was more specific. The CLP-PIXEL
and density functional theory methods provide information on the energetics
of molecular dimers observed in these compounds. The crystal structure
of compound
1
stabilizes with a variety of weak intermolecular
interactions, including C–H···N, C–H···π,
and C–H···Cl hydrogen bonds, a directional C–S···π
chalcogen bond, and unconventional short F···C/N contacts.
The crystal structure of compound
2
is stabilized by
π-stacking interactions, C–H···N, C–H···π,
and C–H···Cl hydrogen bonds, and highly directional
attractive σ–hole interactions such as the C–Cl···N
halogen bond and the C–S···N chalcogen bond.
In addition, S(lp)···C(π) and short N···N
contacts play a supportive role in the stabilization of certain molecular
dimers. The final supramolecular architectures resulting from the
combination of different intermolecular interactions are observed
in both the crystal packing. The molecular electrostatic potential
map reveals complementary electrostatic potentials of the interacting
atoms. The quantum theory of atoms in molecules approach was used
to delineate the nature and strength of different intermolecular interactions
present in different dimers of compounds
1
and
2
. The in vitro experiments suggest that both compounds showed
selectivity against COX-2 targets rather than COX-1. Molecular docking
analysis showed the binding pose of the compounds at the active sites
of COX-1/2 enzymes.