Photosensitizers are light-sensitive molecules that are highly hydrophobic, which poses a challenge to their use for photodynamic therapy. Hence, considerable efforts have been made to develop carriers for the delivery of PSs. Herein, we synthesized a new theranostic nanoagent (CQDs@PtPor) through the electrostatic interaction between the tetraplatinated porphyrin complex (PtPor) and the negatively charged CQDs. The size and morphology of as-prepared CQDs and CQDs@PtPor were characterized by a series of methods, such as XRD, TEM, XPS, and FTIR spectroscopy. The CQDs@PtPor composite integrates the optical properties of CQDs and the anticancer function of porphyrin into a single unit. The spectral results suggested the effective resonance energy transfer from CQDs to PtPor in the CQDs@PtPor composite. Impressively, the CQDs@PtPor composite showed the stronger PDT effect than that of organic molecular PtPor, suggesting that CQDs@PtPor is advantageous over the conventional formulation, attributable to the enhanced efficiency of 1O2 production of PtPor by CQDs. Thus, this CQDs-based drug nanocarrier exhibited enhanced tumor-inhibition efficacy as well as low side effects in vitro, showing significant application potential in the cancer therapy.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2761-5) contains supplementary material, which is available to authorized users.