The analysis of viral nucleic acids (NA), DNA or RNA, is a crucial issue in the diagnosis of infections and the treatment and prevention of related human diseases. Conventional nucleic acid tests (NATs) require multistep approaches starting from the purification of the pathogen genetic material in biological samples to the end of its detection, basically performed by the consolidated polymerase chain reaction (PCR), by the use of specialized instruments and dedicated laboratories. However, since the current NATs are too constraining and time and cost consuming, the research is evolving towards more integrated, decentralized, user-friendly, and low-cost methods. These will allow the implementation of massive diagnoses addressing the growing demand of fast and accurate viral analysis facing such global alerts as the pandemic of coronavirus disease of the recent period. Silicon-based technology and microfluidics, in this sense, brought an important step up, leading to the introduction of the genetic point-of-care (PoC) systems. This review goes through the evolution of the analytical methods for the viral NA diagnosis of infection diseases, highlighting both advantages and drawbacks of the innovative emerging technologies versus the conventional approaches.