Silver–indium–sulfide
quantum dots (AIS QDs) have
potential applications in many areas, including biomedicine. Their
lack of regulated heavy metals, unlike many commercialized QDs, stands
out as an advantage, but the necessity for alloyed or core–shell
structures and related costly and sophisticated processes for the
production of stable and high quantum yield aqueous AIS QDs are the
current challenges. The present study demonstrates the one-step aqueous
synthesis of simple AgInS
2
QD compositions utilizing for
the first time either a polyethyleneimine/2-mercaptopropionic acid
(AIS-PEI/2MPA) mixture or only 2-mercaptopropionic acid (AIS-2MPA)
as the stabilizing molecules, providing a AgInS
2
portfolio
consisting of cationic and anionic AIS QDs, respectively, and tuneable
emission. Small AIS QDs with long-term stability and high quantum
yields (19–23%) were achieved at a molar ratio of Ag/In/S 1/10/10
in water without any dopant or a semiconductor shell. The theranostic
potential of these cationic and anionic AIS QDs was also evaluated
in vitro. Non-toxic doses were determined, and fluorescence imaging
potential was demonstrated. More importantly, these QDs were electrostatically
loaded with zwitterionic 5-aminolevulinic acid (ALA) as a prodrug
to enhance the tumor availability of ALA and to improve ALA-induced
porphyrin photodynamic therapy (PDT). This is the first study investigating
the influence of nanoparticle charge on ALA binding, release, and
therapeutic efficacy. Surface charge was found to be more critical
in cellular internalization and dark toxicity rather than drug loading
and release. Both QDs provided enhanced ALA release at acidic pH but
protected the prodrug at physiological pH, which is critical for tumor
delivery of ALA, which suffers from low bioavailability. The PDT efficacy
of the ALA-loaded AIS QDs was tested in 2D monolayers and 3D constructs
of HT29 and SW480 human colon adenocarcinoma cancer cell lines. The
incorporation of ALA delivery by the AIS QDs, which on their own do
not cause phototoxicity, elicited significant cell death due to enhanced
light-induced ROS generation and apoptotic/necrotic cell death, reducing
the IC50 for ALA dramatically to about 0.1 and 0.01 mM in anionic
and cationic AIS QDs, respectively. Combined with simple synthetic
methods, the strong intracellular photoluminescence of AIS QDs, good
biocompatibility of especially the anionic AIS QDs, and the ability
to act as drug carriers for effective PDT signify that the AIS QDs,
in particular AIS-2MPA, are highly promising theranostic QDs.