A novel Schiff base [4-(morpholin-4-yl) benzylidenyl]thiosemicarbazide (MBT) was created by reaction condensation. The molecules of the products were verified by IR, 1HNMR, MS, and elemental techniques. The synergistic effect of KI with novel MBT on 304 stainless steel (SS) in acidic has been investigated experimentally and theoretically using DFT. The findings demonstrate that restriction efficacy on 304 SS improved with rising inhibitor concentrations, and this benefit was attributed to synergy when KI was injected. From EIS results, IE % increased with a higher concentration of MBT only and MBT + KI (from 100 to 600 ppm). MBT maximum IE % was 84.98%, at 600 ppm. MBT + KI, due to the I− ions synergistic effect, showed an IE% of about 95.48%, at 600 ppm. The adsorptions of MBT and MBT + KI on the surfaces of 304 SS are strongly fitted Langmuir adsorption isotherms. Thermodynamic parameters (Kads, ΔG0ads) were utilized. According to polarization findings, MBT behaves as a mixed-category antagonist. The Schiff base MBT was screened for its in vitro antimicrobial activities against some strains of bacteria and fungi. The result revealed that MBT proved to be an excellent candidate as a fungal agent being able to inhibit Aspergillus flavus.