BackgroundAlzheimer’s disease (AD), a progressive and degenerative disorder, has become one of the severe problems among the aged population all over the world. To use cholinesterase inhibitor drugs has become the most predominant treatment strategy for AD.ResultsA series of novel 1, 3-dihydroxyxanthone Mannich bases derivatives (1a ~ 4e) were synthesized, structure elucidated and evaluated for anti-cholinesterase activity. The result showed that most of the target compounds exhibited moderate to good inhibitory activities with the IC50 values at micromole level concentration against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The preliminary structure-activity indicated that: (i) The alkoxy or alkenoxy substituents in the position 3 of xanthone have a positive influence on the inhibition potency; (ii) types of dialkylamine methyl in position 2 of xanthone affected cholinesterase activities and AChE/BuChE selectivity. Among them, 2-((diethylamino)methyl)-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one showed potent inhibitory activity against AChE with the IC50 value of 2.61 ± 0.13 μM and the best inhibitory activity against BuChE with the IC50 value of 0.51 ± 0.01 μM. The results of a mixed-type manner in enzyme kinetic experiment and molecular docking study for 2-((diethylamino)methyl)-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one demonstrated that the Mannich base derivatives were likely to bind to the active site (AS) and the peripheral anionic site (PAS) of cholinesterases.ConclusionsThis study suggested that 1, 3-dihydroxyxanthone Mannich base derivatives were potential dual inhibitors of both AChE and BuChE, which may be considered as a kind of novel drug candidates for treatment of AD.