The effect of negative bias potential (Ub = -40, -110, and -200 V) during the deposition of multi-element coat-ings on their composition, structure and mechanical properties was studied. It was established that during the transi-tion from a multi-element alloy to a nitride, a single-phase state possible to form on its basis (based on the fcc metal lattice, structural type NaCl). In this case, the composition (FeCoNiCuAlCrV)N of coatings with increasing Ub is de-pleted by the element with the lowest enthalpy of formation of nitride (Cu). In (AlCrTiNbSi)N and (AlCrTiZrNbV)N coatings, the content of low-mass elements (Si and Al) decreases with increasing Ub. In (TiZrHfVNb)N coatings of strong nitride-forming elements with increasing Ub to 200 V, the composition practically does not change. The struc-ture of such coatings is characterized by the presence of a texture with the [111] axis. The presence of weak nitride-forming elements in (FeCoNiCuAlCrV)N coatings leads to the formation of texture [110] for large Ub = 110…200 V. In such coatings, the hardness does not exceed 35 GPa. It is shown that to achieve high hardness at high Ub it is necessary to increase the content in the high-entropy alloy of elements with high nitride-forming ability. In this case, in (TiZrHfVNb)N coatings (made of strong nitride-forming elements with a large mass) at Ub = 200 V, the hardness exceeds 45 GPa.