Currently most technologies available to produce esters require acid or base catalysts for esterification or transesterification reactions. Production of dimerate esters (DE) exhibiting potential as a biolubricant for low temperature applications using catalyst‐ and solvent‐free approaches is presented in this article. Hydrogenated C36 dimer acid and alcohol are reacted under the following conditions: dimer acid/alcohol (1:4.5 molar ratio), 150–200 °C, 24 h, 3Å molecular sieve (15% w/w). The performances of four DE species—dibutyl, dihexyl, di‐(2‐ethylhexyl), and dioctyl dimerate—as lubricant base stocks are evaluated by kinematic viscosity, viscosity index, cloud and pour point (cold flow properties) as well as oxidative stability, and compared with commercial synthetic lubricant base stock and DE, Radialube 7121. High viscosity indexes ranging between 129 and 138 are observed for the synthesized DEs, which are comparable with two commercial base stock, polyalpha olefin (PAO), and polyolester (POE). Significantly low pour point, less than −42 °C, is observed for di‐(2‐ethylhexyl) dimerate attributed to the branching of the side chain. The DEs are categorized as ISO VG 68 based on their viscosity according to ISO 3448 classification and show potential as biolubricant with high viscosity index and excellent cold flow properties.
Practical Applications: DFAE obtained have high potential to be used as lubricant base stock for equipment and machinery operating at extremely low temperature.