Six photoactivatable analogs of the human thrombin receptor activating peptide (TRAP), SFLLRN-NH2, were synthesized by substituting the photoactive amino acid, p-benzoylphenylalanine (Bpa), into each position of the peptide sequence. Platelet aggregation assays indicated that the peptides with Bpa substitutions at positions 3 to 6 retained agonist activity. These peptides were prepared in tritiated form as potential thrombin receptor photoaffinity labels. The [3H]Bpa-containing analogs were constructed by resynthesizing the peptides with the amino acid, 4-benzoyl-2',5'-dibromophenylalanine (Br2Bpa), and subjecting the purified peptides to Pd-catalyzed tritiodebromination. The radiochemical yields for the reductive tritiation were < 2% for peptides with [3H]Bpa in the third and fourth positions, and between 7 and 16% for the peptides with substitutions at the fifth and sixth positions. The low yields were due to over-reduction of the Bpa carbonyl group and nonspecific degradation during reductive tritiation. This report describes the first use of Br2Bpa for the preparation of tritiated photoactivatable peptides.