Three new vinyl ether monomers containing phosphonate moieties were synthesized from transetherification reaction. We showed that the yield was dependent on the spacer length between the vinyl oxy group and the phosphonate moieties: when the spacer is a single methylene side reaction may occur, leading to the formation of acetal compounds. Free-radical copolymerizations of phosphonate-containing vinyl ether monomers with maleic anhydride were carried out, leading to alternated copolymers of rather low molecular weights (from 1000 to 7000 g/mol). Both gel permeation chromatography and 31 P NMR analyses enhanced possible intramolecular transfer reactions occurring from the phosphonate moieties. Kinetic investigation showed that the electron-withdrawing character of the phosphonate moieties tends to decrease the rate of copolymerization. Nevertheless, almost complete monomers conversion was reached after 30 min of reaction with dimethyl vinyloxyethylphosphonate (VEC 2 PMe). Then, radical copolymerization of VEC 2 PMe with a series of electron-accepting monomers, that is, dibutyl maleate, dibutylitaconate, itaconic anhydride, butyl maleimide, and methyl maleimide, led to a series of alternated copolymers. From kinetic investigation, we showed that the higher the electron-accepting effect, the faster the vinyl ether consumption and the higher the molecular weights.