Ideal electromagnetic attenuation material should not only shield the electromagnetic interference but also need strong absorption. Lightweight microwave absorber with thermal stability and high efficiency is a highly sought-after goal of researchers. Tuning microwave absorption to meet the harsh requirements of thermal environments has been a great challenge. Here, grape-like Fe3O4-multiwalled carbon nanotubes (MWCNTs) are synthesized, which have unique multiscale-assembled morphology, relatively uniform size, good crystallinity, high magnetization, and favorable superparamagnetism. The Fe3O4-MWCNTs is proven to be a smart microwave-absorber prototype with tunable high intensities in double belts in the temperature range of 323-473 K and X band. Maximum absorption in two absorbing belts can be simultaneously tuned from ∼-10 to ∼-15 dB and from ∼-16 to ∼-25 dB by varying temperature, respectively. The belt for reflection loss ≤-20 dB can almost cover the X band at 323 K. The tunable microwave absorption is attributed to effective impedance matching, benefiting from abundant interfacial polarizations and increased magnetic loss resulting from the grape-like Fe3O4 nanocrystals. Temperature adjusts the impedance matching by changing both the dielectric and magnetic loss. The special assembly of MWCNTs and magnetic loss nanocrystals provides an effective pathway to realize excellent absorbers at elevated temperature.
Among the wide list of known high performance polymers, polybenzoxazoles (PBOs) have gained a prominent position as the most heat-resistant polyheterocyclic polymer. Nonetheless, PBOs have found applications in a rather restricted variety of technologies, mainly in the form of fibers. Herein, we report our pioneering work for producing cross-linked polybenzoxazole via a novel route using recently developed smart class of benzoxazine resins as precursors. This class of benzoxazines incorporates multiple smart features all in one molecule. The most attractive feature is its structural transformation into a more thermally stable cross-linked polybenzoxazole without the harmful consequences of traditional polybenzoxazole synthesis, such as the use of poly(phosphoric acid) as solvent. By this smart conversion, the flame-retardant oxazole moieties are successfully incorporated into the network structure. Further advantages of this new route for cross-linked polybenzoxazoles include outstanding flexibility in molecular design, cost effectiveness, and easy processability.
in such areas. [2] The ideal efficiency of solar energy conversion of plasmonic metalbased hybrid catalysts comes from anisotropic crystallization, heterointerface. [3] Besides the morphology of plasmonic metal nanocrystals (NCs), the solar energy conversion efficiency of plasmonic metalsemiconductor NCs should be sensitive to the manner of coupling between metal NCs and the semiconductor. [4] Therefore, it is highly desirable to explore a versatile strategy to synthesize accurately controlled anisotropic configuration, monocrystalline shell, and intended site-selective heterocontact between plasmonic metal and semiconductor.The absorbance range is an essential factor on the efficiency of light harvesting and photoelectric catalysis. So far, most of the applications based on plasmonic metal hybrid NCs are limited in specific spectral range, because most of plasmonic metal nanostructures only have plasmon resonances in the visible regions. [5] Au nanorods (NRs), [6] because of its intriguing longitudinal surface plasmon resonance (LSPR), can be excited by incident light polarized along the axial direction. Therefore, it can be synthetically tailored across a broad spectral range and In this communication, light harvesting and photoelectrochemical (PEC) hydrogen generation beyond the visible region are realized by an anisotropic plasmonic metal/semiconductor hybrid photocatalyst with precise control of their topology and heterointerface. Controlling the intended configuration of the photocatalytic semiconductor to anisotropic Au nanorods' plasmonic hot spots, through a water phase cation exchange strategy, the site-selective overgrowth of a CdSe shell evolving from a core/shell to a nanodumbbell is realized successfully. Using this strategy, tip-preferred efficient photoinduced electron/hole separation and plasmon enhancement can be realized. Thus, the PEC hydrogen generation activity of the Au/CdSe nanodumbbell is 45.29 µmol cm −2 h −1 (nearly 4 times than the core/shell structure) beyond vis (λ > 700 nm) illumination and exhibits a high faradic efficiency of 96% and excellent stability with a constant photocurrent for 5 days. Using surface photovoltage microscopy, it is further demonstrated that the efficient plasmonic hot charge spatial separation, which hot electrons can inject into CdSe semiconductors, leads to excellent performance in the Au/CdSe nanodumbbell.The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/aenm.201803889.Including the visible light (400-700 nm), the light harvest beyond visible (λ > 700 nm with ≈43% ratio of solar energy) to contribute effective photocatalysis is important but rarely studied. [1] Plasmonic metal based anisotropic metal-semiconductor hybrid nanostructures emerge to be potential materials for applications
Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.