“…In the case of physical crosslinking, the following methods have been used: freeze-thawing (poly (vinyl alcohol) (PVA), PVA/chitosan); stereocomplex formation (poly(l-lactide)-poly(d-lactide)); ionic interaction (chitosan, alginates); H-bonding (hyaluronic acid); and maturation (heat-induced aggregation, hyaluronic acid) [16][17][18][19][20][21][22][23][24][25][26][27]. Meanwhile, chemically crosslinked hydrogels can be obtained using chemical or radiation grafting (poly (ε-caprolactone), poly (ethylene glycol), N-vinyl caprolactam, chitosan); radical polymerization (poly (ethylene glycol) methyl ether methacrylate); condensation or enzymatic reaction (B-cyclodextrin, chitosan); UV, microwave, gamma, or electron beam irradiation (poly (vinyl methyl ether), alginate/PVA, chitosan, polyethylene oxide (PEO), and poly (acrylic acid) (PAAc), polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)) [16,[28][29][30][31][32][33][34][35][36][37]. The choice of the synthetic route for hydrogel preparation is significant because the type of crosslinking method used may affect the final properties [20].…”