The
marine Streptomyces sp. CNQ-617 produces two
diastereomers, marineosins A and B. These are structurally related
to alkyl prodiginines, but with a more complex cyclization and an
unusual spiroaminal skeleton. We report the identification of the mar biosynthetic gene cluster and demonstrate production
of marineosins through heterologous expression in a S. venezuelae host named JND2. The mar cluster shares the same
gene organization and has high homology to the genes of the red cluster (which directs the biosynthesis of undecylprodiginine)
but contains an additional gene, named marA. Replacement
of marA in the JND2 strain leads to the accumulation
of premarineosin, which is identical to marineosin with the exception
that the middle pyrrole (Ring B) has not been reduced. The final step
of the marineosin pathway is thus a MarA catalyzed reduction of this
ring. Replacement of marG (a homologue of redG that directs undecylprodiginine cyclization to give
streptorubin B) in the JND2 strain leads to the loss of all spiroaminal
products and the accumulation of 23-hydroxyundecylprodiginine and
a shunt product, 23-ketoundecylprodiginine. MarG thus catalyzes the
penultimate step of the marineosin pathway catalyzing conversion of
23-hydroxyundecylprodiginine to premarineosin. The preceding steps
of the biosynthetic marineosin pathway likely mirror that in the red-directed biosynthetic process, with the exception of
the introduction of the hydroxyl functionality required for spiroaminal
formation. This work presents the first experimentally supported scheme
for biosynthesis of marineosin and provides a new biologically active
molecule, premarineosin.